DEPARTMENT.FACULTY
- DEPARTMENT_STAFF.QUALIFICATION
M.Phil., Ph. D. (Mathematics)
- DEPARTMENT_STAFF.DESIGNATION
Professor
- DEPARTMENT_STAFF.THRUST_AREA
Derivations in Rings & Near Rings, Commutativity & Structures of Rings & Near Rings
- DEPARTMENT_STAFF.ADDRESS
Department of Commerce, Aligarh Muslim University, Aligarh.
- DEPARTMENT_STAFF.MOBILE
9412460182
- DEPARTMENT_STAFF.EMAIL
ms.khan.cm@amu.ac.in
- DEPARTMENT_STAFF.TIME_TABLE
- Dr. Mohammad
Shadab Khan working as Professor of Mathematics in the Department of Commerce, Aligarh
Muslim University, Aligarh. He started his teaching career as Assistant
Professor in the Department of Commerce, Aligarh Muslim University, Aligarh in
the year 2003 after completing M. Phil & Ph. D degrees in Mathematics from
Department of Mathematics, Aligarh Muslim University, Aligarh. During his total
of twenty years teaching & research experience, he also served as
Assistant Professor
from 18 February, 2012 to 12 June, 2014 in the Department of Mathematics,
College of Science and Humanity Studies, Salman Bin Abdul-Aziz University,
Al-Kharj, Kingdom of Saudi Arabia (KSA). During his foreign assignment, he very actively served in the area of Quality, Curriculum Development and
Examination Control. Dr. Khan is a widely travelled academician and visited several
countries to attended many International/National Conferences/Seminars/Symposiums
and also published several research papers in journals of National /International
repute besides this he has also authored four text books and successfully guided three Ph. D. students. His area of
specialization is Structures & Commutativity of Rings & Near Rings,
Derivations in Rings & Near Rings.
- A note on differential identities in prime and semi-prime rings, Journal of Contemporary Mathematics, Vol.01, Issue 02, (2020) 77-83
DOI: http://doi.org/10.37256/cm.000127.77-83
- Derivations of rings and Banach Algebras, Italian Journal of Pure & Applied Mathematics, Volume 42, (2019), 141-153 http://ijpam.uniud.it/journal/onl_2019-42.htm
- Some differential identities on prime and semi-prime rings and Banach algebras, Rendiconti Circolo Mat. Palermo, II Ser., 305-313 (Springer Nature), (2018). http://doi.org/10.1007/s12215-018-0358-6
- A note on multiplicative (generalized)-skew derivations on semiprime rings, Journal of Taibah University for Science, (Tayler & Francis) (2018), 450-454. http://doi.org/10.1080/16583655.2018.1490049
- On commutativity of rings under certain polynomial constraints, International Journal of Data Science and Applications, 2018,4(1), 13-19.
doi:10.11648/ijdsa.20180401.33
- On derivations in prime and semi-prime rings with Banach algebras, International Journal of Algebra, Vol.12, (2018) No. 08, 297-309
- Renewable Energy as tool of sustainable growth of rural India: Proceedings of an International Conference on Rural Development Bhutan-Prospects & Challenges, 40-47, 2016 organized by Gaeddu College of Business Studies, Royal University of Bhutan, Bhutan.
- Generalized derivations in rings on Lie ideals with Banach algebras, Journal of Advances in Mathematics, Vol. 11, No. 01 (2015), 3948-3959.
- A note on Jordan left* centralizers in rings with involution, International Journal of Algebra, Vol. 09, No. 01(2015),15-23.
- On generalized derivations in d-algebras, Journal of Advanced Research in Pure Mathematics, Vol.7, (2015), no. 1-12. DOI: 10.5373/jarpm.2196.110814